Jahrg. 112

Chem. Ber. 112, 3390 – 3412 (1979)

Reaktivität von Metall-Metall-Bindungen

Wiederholte Schließung und Öffnung einer Fe-Co-Bindung durch Eliminierung und Addition

Hans-Joachim Langenbach und Heinrich Vahrenkamp*

Chemisches Laboratorium der Universität Freiburg, Albertstr. 21, D-7800 Freiburg

Eingegangen am 25. Januar 1979

In arsenverbrückten Metallcarbonyl-Zweikernkomplexen ist die Sequenz von Bildung und Lösung der Metall-Metall-Bindung durch Eliminierung von CO und Addition eines Phosphanliganden wiederholbar. Ausgehend von $(CO)_4 Fe - AsMe_2 - Co(CO)_4$ läßt sie sich viermal hintereinander durchführen. Der jeweils am Cobaltatom eingeführte Ligand kann in Komplexen mit und ohne Metall-Metall-Bindung durch Isomerisierung auch auf das Eisenatom übertragen werden. Mit PMe₃ und P(OMe)₃ als Phosphanen sind so bis zur Einführung von drei Liganden 44 verschiedene Komplexe denkbar, von denen 35 isoliert wurden (Schema 1). Durch Nebenreaktionen bzw. zu Vergleichszwecken wurden weitere Komplexe mit kettenförmiger Anordnung von Metall- und P- bzw. As-Atomen erhalten. Nach der Einführung von vier Liganden findet das Eliminierungs/Additions-Schema eine natürliche Grenze, da dann Phosphan-Eliminierung gegenüber der CO-Eliminierung bevorzugt wird. Die beschriebenen Sequenzen lassen sich als Grundmuster katalytischer Aktivität durch Öffnung von Metall-Metall-Bindungen verstehen.

Reactivity of Metal-Metal Bonds

Repeated Formation and Cleavage of a Fe-Co Bond by Elimination and Addition

In arsenic-bridged dinuclear metal carbonyl complexes the sequence of formation and cleavage of the metal-metal bond by elimination of CO and addition of a phosphine ligand is repeatable. Starting from $(CO)_4Fe-AsMe_2-Co(CO)_4$ it can be performed four times in a row. The ligand which in each case is introduced at the cobalt atom can be transferred to the iron atom by isomerisation in complexes with and without metal-metal bonds. With PMe₃ and P(OMe)₃ as phosphines and up to the introduction of three ligands thus 44 different complexes are possible of which 35 were isolated (scheme 1). By side reactions or for the purpose of comparisons further complexes with chain-like arrangements of metal and P or As atoms were obtained. When four ligands are introduced the elimination/addition scheme reaches a natural limit since then phosphine elimination is preferred to CO elimination. The described sequences can be understood as basic patterns of catalytic activity by opening of metal-metal bonds.

Donor-Akzeptor-Metall-Metall-Bindungen, zunächst als ein Kuriosum betrachtet, sind seit einiger Zeit in größerer Zahl bekannt^{1, 2)}. Sie zeigen leicht einsichtig und besonders ausgeprägt eine typische Reaktion der Metall-Metall-Bindung, nämlich ihre Spaltung durch Nucleophile. Normalerweise entstehen bei dieser Reaktion zwei Produkte.

© Verlag Chemie, GmbH, D-6940 Weinheim, 1979

0009-2940/79/1010-3390 \$ 02.50/0

Schema 1. Bildung und Lösung der Fe-Co-Bindung ausgehend von 1 (L = PMe_3 , $P(OMe)_3$)

Nur wenn die beiden Metallatome zusätzlich durch einen Brückenliganden miteinander verknüpft sind, verbleibt auch nach der nucleophilen Spaltung der Metall-Metall-Bindung ein Zweikernkomplex³⁻⁷⁾. Damit ist die Möglichkeit gegeben, durch Eliminierung eines Liganden die Metall-Metall-Bindung neu zu knüpfen und die Bildung und Lösung dieser Bindung zyklisch wiederholbar zu machen.

Die periodische Öffnung und Schließung von Metall-Metall-Bindungen spielt möglicherweise eine Rolle im Rahmen mehrkernkomplex-katalysierter Reaktionen. Zumindest für einen Fall konnten wir nachweisen⁸⁾, daß der Aktivierungsschritt einer solchen Katalyse die Öffnung einer Metall-Metall-Bindung ist. Es war deshalb von Interesse, ob und wie oft sich in verbrückten Zweikernkomplexen die Metall-Metall-Bindungen durch Eliminierung bzw. Addition von Liganden öffnen und schließen lassen. Die vorliegende Arbeit berichtet dazu über Versuche an einer Komplexreihe, die sich vom Ausgangskomplex (CO)₄Fe-AsMe₂-Co(CO)₄ (1) ableitet.

Reaktionsschema

Es war bereits bekannt, daß die erste Eliminierungs/Additions-Sequenz ausgehend von 1 leicht zu vollziehen ist. 1 verliert spontan CO unter Bildung von 2^{9} , welches seinerseits rasch Phosphane unter Spaltung der Fe-Co-Bindung addiert^{3,4)}. Diese und die neuen sich daran anschließenden Eliminierungs-, Additions- und Umlagerungsreaktionen sind in Schema 1 zusammengefaßt. Als Nucleophile wurden Trimethylphosphan und/oder Trimethylphosphit eingesetzt. Die aufgefundenen Komplextypen sind durch Großbuchstaben charakterisiert. Im folgenden wird zunächst die Gewinnung der einzelnen Verbindungen und daran anschließend ihre Charakterisierung beschrieben. Mit PMe₃ und/oder P(OMe)₃ als Liganden L sind bis zur Einführung von drei L (Komplextypen A-M) 44 verschiedene Komplexe möglich, von denen 35 isoliert werden konnten.

Umsetzungen

Die hier beschriebenen Umsetzungen begannen mit den bereits bekannten Komplexen 3 und $4^{3,4}$ vom Typ A ohne Metall-Metall-Bindung. Diese erlitten bei UV-Bestrahlung in Benzol CO-Abspaltung, wobei sich wunschgemäß die Komplexe 5 und 6 vom Typ C bildeten, die eine Fe-Co-Bindung haben.

5 und 6 sind im festen Zustand und in gekühlter Lösung einige Tage beständig. Bereits bei geringer thermischer Belastung erfolgt jedoch Isomerisierung zu den Komplexen 7 und 8 vom Typ D, die den Phosphanliganden am Eisen tragen und thermisch stabil sind. Ihre Konstitutionszuordnung erfolgte außer durch spektroskopische Charakterisierung (s. u.) durch unabhängige Synthese. Diese verlief über die Komplexe 9 und 10 vom Typ B. Die photochemische Umwandlung $B \rightarrow D$ entspricht derjenigen von A nach C. Die verschiedene Lage des Donorliganden L macht jedoch in B im Vergleich zu A das Eisenatom zu einem besseren Donor und das Cobaltatom zu einem besseren Akzeptor. Dementsprechend verlief die CO-Eliminierung, die zu einer Donor-Akzeptor-Metall-Metall-Bindung führt, bei $B \rightarrow D$ viel leichter als bei $A \rightarrow C: 7$ und 8 bildeten sich aus 9 und 10 auch schon spontan und bei Lichtausschluß.

Die Gewinnung von 9 und 10 erfolgte in Analogie zu der von 1⁹⁾. Zunächst wurden durch Bestrahlungsreaktion aus LFe(CO)₄ und Me₂AsNMe₂ die Aminoarsan-Komplexe 11 und 12 hergestellt, die sich mit HCl zu den Chlorarsan-Komplexen 13 und 14 spalten ließen. 11 und 12 sind einigermaßen stabil. 13 und 14 sind auch bei Kühlung nur begrenzt lagerfähig und mußten schnell mit KCo(CO)₄ zu 9 und 10 umgesetzt werden. Wegen ihrer Reaktivität mußte die analytische und spektroskopische Charakterisierung von 9, 10, 13 und 14 recht rasch erfolgen. Das Haupt-Zersetzungsprodukt von 14 war unerwarteterweise der Kakodylkomplex 15, denn dessen Bildung, die bevorzugt im Vakuum erfolgt, ging mit der Freisetzung von Chlorgas einher.

Die Metall-Metall-Bindung im Komplextyp C ließ sich durch die Phosphane wieder öffnen. Von den dabei entstehenden Verbindungen 16-18 (Typ E) war 17 aus 5 mit P(OMe)₃ und aus 6 mit PMe₃ zugänglich. Ausgehend von 1 ist beim Typ E der Eliminierungs/Additions-Zyklus zweimal durchlaufen. Entsprechend einmal durchlaufen ist er beim Typ F ausgehend von B. Die zu F gehörenden Verbindungen 19-22 entstanden eindeutig durch Addition von L an 7 bzw. 8. 19 und 22, die jeweils nur eine Art von L enthalten, bildeten sich auch durch Isomerisierung von 16 bzw. 18. Die Isomerisierung $E \rightarrow F$ in Abwesenheit der Metall-Metall-Bindung verlangte jedoch wesentlich drastischere Bedingungen (60-80 °C in Lösung) als die Isomerisierung C \rightarrow D. Von den zwei möglichen Isomerisierungsprodukten von 17 wurde nur 21 gebildet, d. h. es wanderte nur der $P(OMe)_3$ -Ligand. Diese Umlagerung war aber in Gegenwart eines Überschusses an freiem $P(OMe)_3$ inhibiert. Die auf zwei Wegen erfolgende Bildung der Komplexe vom Typ F ist wieder ein wesentliches Argument ihrer Konstitutionszuordnung.

Betrug bei der Synthese von 20 aus 7 der Überschuß an $P(OMe)_3$ weniger als 10-15Moläquivalente, so wurde in vergleichbaren Mengen wie 20 der ungewöhnliche Dreikernkomplex 23 gebildet, wobei gleichzeitig $(CO)_4$ FePMe₃ entstand. Die Sicherung der Konstitution von 23 gelang durch unabhängigeSynthese, nachdem wir die metallorganische Lewis-Base Me₂As – Co(CO)₂[$P(OMe)_3$]₂ erstmals erhalten hatten¹⁰⁾. Sie reagierte praktisch quantitativ mit 7 zu 23 im Sinne der nucleophilen Fe–Co-Bindungsspaltung. Die Entstehung von 23 ist ein Sonderfall bei den hier beschriebenen Reaktionen, die Öffnung der Metall-Metall-Bindung in Komplexen wie 1 oder 7 durch Organometall-Arsane ist jedoch nicht ungewöhnlich. Beim Erhitzen in Lösung unterlag 23 wie viele andere von uns untersuchte Carbonylcobalt-dimethylarsen-Komplexe¹¹⁾ der Eliminierung eines Co–As-Bruchstückes, das als Oligomeres ausfiel, und der Bildung von 20 mit verkürzter Co–As-Kette.

Aus den Verbindungen des Typs E läßt sich durch UV-Bestrahlung erneut eine CO-Gruppe eliminieren. Dadurch wurden die Komplexe 24-26 des Typs G zugänglich, die sich durch eine zusätzliche CO-Brücke auszeichnen. 24-26 sind in Lösung wieder thermolabil; sie lagerten sich bereits bei Raumtemperatur in ihre Isomeren des Typs H um. Dabei hat 25 wieder zwei Isomerisierungs-Möglichkeiten, die diesmal beide verwirklicht wurden. Unter milden Bedingungen bildete sich 29 unter P(OMe)₃-Wanderung, während beim Erhitzen zusätzlich unter PMe₃-Wanderung der stabilere Komplex 28 entstand. Ein Gleichgewichtsgemisch mit ähnlichen Konzentrationen an 28 und 29 wurde auch ausgehend von reinem 28 oder 29, allerdings unter viel drastischeren Bedingungen, erhalten. Die Trennprobleme bei 28 und 29 vermied die unabhängige Synthese durch Bestrahlung von 20 bzw. 21, die auch die anderen Komplexe des Typs H aus den entsprechenden vom Typ F entstehen ließ.

Bei der nucleophilen Öffnung der Fe-Co-Bindung der Verbindungsklasse G zeigten sich erstmals Beschränkungen. Von den vier möglichen Vertretern des Typs I konnte nur einer erhalten werden. Es ist dies 31 mit zwei $P(OMe)_3$ - und einer PMe_3 -Gruppe am Cobaltatom. Dies liegt jedoch wahrscheinlich nicht an der mangelnden Reaktivität der Fe-Co-Bindung in G, sondern daran, daß die Isomerisierungs-Reaktionen I \rightarrow J und G \rightarrow H besonders leicht verlaufen. 31 konnte unter schonenden Bedingungen aus 25 mit $P(OMe)_3$ und aus 26 mit PMe₃ erhalten werden. Beim Erhitzen lagerte es sich in 36 um.

Von den Komplexen des Typs J, zu denen 36 gehört, konnten alle sechs Vertreter 32-37 isoliert werden. Dies war einmal, wie für 36 beobachtet, direkt aus den Komplexen des Typs G möglich. 24 lieferte 32 oder 33, 25 ergab 35 oder 36, 26 und P(OMe)₃ lieferten 37. Die Bildung von 35 aus 25 und PMe₃ zeigt dabei wie die von 36 aus 26 über 31, daß auch das reaktivere Nucleophil nicht am Eisen angreift, sondern daß Liganden-Wanderung vom Cobalt zum Eisen stattfindet. Ein eindeutigerer Weg zu 32-37 ging von den Komplexen des Typs H aus, die ohnehin ausgehend vom Typ G als Zwischenstufen in Betracht gezogen werden müssen. Das hinzukommende Phosphan wurde jeweils am Cobalt addiert, und alle Wege vom Typ H zum Typ J waren bei Einsatz der entsprechenden Nucleophile realisierbar. Dabei gab es für 33 und 36 jeweils zwei Synthesen, die auch

beide durchgeführt wurden. Bei den beiden Isomeren 28 und 29 wurde die Metall-Metall-Bindung in 29, das den schwächeren Donor $P(OMe)_3$ am Eisen trägt, viel schneller geöffnet als in 28. Mit den Komplexen 31–37 ist, ausgehend von 1, der dritte Eliminierungs/ Additions-Zyklus vollzogen.

Die erneute Schließung der Metall-Metall-Bindung war auch in Gegenwart von drei Donorliganden noch möglich. Sie wurde ausgehend vom Komplextyp J durch vorsichtige Bestrahlungsreaktion verwirklicht. Die Zahl der realisierbaren Primär- und Isomerisierungsprodukte war jedoch deutlich beschränkt. Die einfache Fe-Co-Verknüpfung fand nur für J mit mindestens einem $P(OMe)_3$ -Liganden am Cobalt statt, die Reaktionen waren $33 \rightarrow 38$, $34 \rightarrow 39$, $36 \rightarrow 40$ und $37 \rightarrow 41$, sie führten zum Komplextyp K. Die Verbindungen K fielen alle als Öle an. Sie zeigten keine Tendenz mehr zur Isomerisierung unter L-Wanderung. Die beiden Komplexe J mit zwei PMe₃-Liganden am Cobalt zeigten spezielle Reaktionen. 32 eliminierte bei Bestrahlung nicht CO, sondern PMe₃, wodurch 27 zurückgebildet wurde. 35 ergab nach CO-Abspaltung 42, das der einzige Vertreter des CO-verbrückten Typs L ist. 42 isomerisierte leicht zu 43 und eröffnete damit den Weg zum Typ M, der ein drittes Isomeres zum Typ K und L darstellt. 43 ist im Rahmen dieser Arbeit der einzige mehrfach phosphansubstituierte Komplex, der mehr P-Liganden am Eisen als am Cobalt trägt.

Den letzten Schritt in den hier beschriebenen Eliminierungs/Additions-Zyklen stellt die nucleophile Öffnung der Fe-Co-Bindung in den Komplexen vom Typ K, L und M dar. Sie erlaubte ausgehend von den vier Vertretern des Typs K noch alle Kombinationen, wodurch die sechs Vertreter 44-49 des Typs N zugänglich wurden. Dabei ließen sich für 45 (aus 38 oder 39) und 48 (aus 40 oder 41) wieder beide möglichen Synthesen durchführen. 48 war auch aus 42 mit P(OMe)₃ zu erhalten. Diese Reaktion, die PMe₃ freisetzt, kann nicht einer einfachen Addition des Donors am Cobalt entsprechen. Die wahrscheinliche Reaktionssequenz besteht in einer Additions-/Eliminierungs-/Additions-Folge $42 \rightarrow 47 \rightarrow 40 \rightarrow 48$, die NMR-spektroskopisch zu erkennen war.

Auch die Umsetzung von 42 mit PMe_3 war nicht vorhersagbar. Es bildete sich 50 mit zwei Phosphanliganden am Eisen. Die Reaktion könnte über 43, das Isomere von 42, laufen, das aber in der Reaktionslösung nicht nachweisbar war. 50 und 51, die beiden Vertreter des Komplextyps O, waren aus 43 mit dem betreffenden Phosphan zugänglich.

In den Komplextypen N und O sind 50% der CO-Gruppen von 1 durch Donorliganden ersetzt. Damit scheint eine Grenze der elektronischen Belastbarkeit des Systems erreicht zu sein. Denn diese Komplexe zeigten keine Isomerisierungs- oder Metall-Metall-Verknüpfungsreaktionen mehr. Vielmehr neigten 44 – 51 zur Rückreaktion unter Abspaltung eines Phosphanliganden, wobei bevorzugt der bessere Donor PMe₃ abgegeben wurde. Diese Eigenschaft, die erstmals bei der Synthese von 48 aus 42 auffiel (s. o.), ist dafür verantwortlich, daß 44, 47 und 50 in Lösung nur in Gegenwart eines großen Überschusses an PMe₃ beständig sind und daß sich 49 bei Bestrahlung zu 41 und freiem P(OMe)₃ umwandelte. 45, 46, 47, 48 und 51 wurden bei Bestrahlung völlig zersetzt.

Spektroskopische Produktidentifizierung

Für 2 liegt eine Kristallstrukturanalyse vor 12 , die Zusammensetzungen von 3 und 4 sind massenspektroskopisch gesichert $^{3.4}$. Die spektroskopischen Daten von 1-4 sind zu Vergleichszwecken in den entsprechenden Tabellen mit angegeben.

3397

Das wesentliche chemische Argument zur Konstitutionszuordnung der Komplexe 3-6 und 16-51 ist die Annahme, daß das neu eintretende Phosphan entsprechend der Donator-Akzeptor-Fe \rightarrow Co-Bindung^{3,9)} immer am Cobalt addiert wird. Diese Annahme wird durch die spektroskopischen Daten (s. u.) unterstützt. An repräsentativen Vertretern wurde dazu die Molekülzusammensetzung durch Massenspektren bestätigt. Von 15, 23, 24 und 48 zeigten FD-Massenspektren praktisch nur das Molekül-Ion, die EI-Massenspektren von 17, 22, 26 und 36 ließen darüber hinaus das typische CO-Abspaltungsmuster erkennen.

Bei den NMR-Daten (Tab. 1) sind die einfachen ¹H-rauschentkoppelten ³¹P-NMR-Spektren ausgewählter Vertreter besonders informativ. Sie unterscheiden die FePMe₃-Liganden (20-47 ppm) deutlich von den CoPMe₃-Liganden (15-18 ppm) und die FeP(OMe)₃-Liganden (176-197 ppm) deutlich von den CoP(OMe)₃-Liganden (151 bis 164 ppm), und das Quadrupolmoment des Cobaltkerns verbreitert die Signale der *Co*-gebundenen P-Atome z. T. bis hin zur Unauffindbarkeit. Dies half sehr bei der Interpretation der Isomerisierungsreaktionen.

Auch die ¹H-NMR-Daten (Tab. 1) lassen einige Regelmäßigkeiten erkennen. Deren deutlichste ist, daß das AsMe₂-Signal für die Komplexe mit Metall-Metall-Bindung immer um 0.3-0.5 ppm bei höherem Feld liegt als das der entsprechenden ohne Metall-Metall-Bindung. Ein umgekehrter Trend gilt für die Signale der CoPMe₃- und CoP(OMe)₃-Gruppen, während der Gang für die FeP(OMe)₃-Einheiten weniger ausgeprägt dem für die AsMe₂-Gruppen entspricht. Die Frage, ob ein PMe₃- bzw. P(OMe)₃-Ligand am Eisen oder Cobalt gebunden ist, ist für die Systeme ohne Metall-Metall-Bindung eindeutig zu entscheiden. Hier liegen die FePMe₃-Signale bei 1.12-1.51 ppm, die CoPMe₃-Signale (bei gleichen Verbindungstypen um mindestens 0.3 ppm hochfeldverschoben) bei 0.68 – 1.22 ppm, die FeP(OMe)₃-Signale bei 3.40 – 3.68 ppm, die CoP(OMe)₃-Signale bei 3.05-3.48 ppm. Für Systeme mit Metall-Metall-Bindung gilt diese einfache Unterscheidung nicht. In Fällen, wo die Zuordnung der Liganden zu den einzelnen Metallatomen zweifelhaft war, lieferte die Verfolgung von Isomerisierungsreaktionen zusätzliche Indizien, da eines von zwei Isomeren normalerweise eindeutig zu identifizieren war. Mit zunehmendem Substitutionsgrad wandern die PMe3- und AsMe2-Signale um bis zu 0.5 ppm zu tieferem Feld. Zwei PMe₃- bzw. P(OMe)₃-Liganden am gleichen Metallatom geben sich immer durch ein Pseudotriplett zu erkennen. Unerwartet ist, daß mit Ausnahme von 43 zwei verschiedene Phosphanliganden am gleichen Metallatom keine zusätzliche wechselseitige Dublettaufspaltung ihrer ¹H-NMR-Signale hervorrufen, dies scheint jedoch an der sehr kleinen Kopplungskonstante ${}^{4}J(P-H)$ zu liegen. Aus dem Kopplungsmuster der AsMe2-Signale läßt sich ebenfalls eine Aussage über die Stellung der Liganden machen: Phosphoratome am Cobalt führen zu größeren Signalaufspaltungen als solche am Eisen. Auch hier werden nicht alle Kopplungsmöglichkeiten verwirklicht. Während zwei gleiche P-Liganden an einem Metallatom das Signal der AsMe₂-Gruppe regelmäßig zum Triplett aufspalten, erzeugt mit Ausnahme von 43 von zwei verschiedenen Phosphorliganden an einem Metall wiederum nur einer eine Dublettaufspaltung. Bei den kompliziertesten Komplexen des Typs N ist die Multiplettstruktur des AsMe2-Signals nicht mehr eindeutig zu interpretieren. Die Meßdaten (Multiplettstruktur, Kopplungskonstanten) sind: 44 (Quintett, 0.5), 45 (Dublett-Dublett-Triplett, 1.7-0.6-0.2), 46 (Quintett, 0.8), 47 (Dublett-Triplett, 0.5-0.2), 48 (Dublett-Dublett-

Signalfo	rmen: b	breit, D D	Tab. 1. ublett, T	NMR-Dater Triplett, DD Lj	n der Kol Dublett inien ang	mplexe 1–51 von Dubletts, egeben ist, M	(Benzol, δ DT Duble Multiplet	in ppm, J ir tt von Triple t, das im Tex	ı Hz, int. TMS tts, PT Pseudo t erläutert wir	bzw. ext. H ₃ PC triplett, bei dem d)4). als J der	. Abstand der äußeren	_
							I-H ₁	VMR				³¹ P-NMR	i i
	Typ	FeP(O δ	Me) ₃ J	CoP(O) §	Me) ₃ J	AsMe δ	2 J	δFe	PMe ₃ J	CoPM 8	le ₃ J	Q	
-						1.58							
7	Ι					1.27							
ę	Y					1.89 D	1.9			0.68 D	10.4		
4	Y			3.05 D	10.5	1.78 D	2.9						
ŝ	C					1.42 D	2.6			1.10 D	9.7		
9	C			3.37 D	11.5	1.45 D	3.5					I	
2	D					1.52 D	0.9	1.09 D	9.6			20.4	
œ	Ω	3.18 D	11.7			1.50 D	0.9					176.4	
6	B					1.90 D	0.5	1.12 D	10.1			43.8	
9	B	3.46 D	12.1			1.86 D	0.9					187.9	
11 ^{a)}	ł					1.35 D	0.3	1.24 D	10.0				
12 ^{b)}	I	3.48 D	12.1			1.33 b							
EI ;	I					1.75 D	0.3	1.08 U	C 11.				
14	I	3.37 D	11.8			1.73 b							
15	1.5	3.43 D	12.0			1.68 D	1.0			TG 100	T c		
<u>e</u> :	되			C 00 C		1 68.1	0.0			1.91 P.1	4. ¢		
18	z] (z			1 00.0 3 31 PT	11.4	1.24 U 1.95 T	0.1			U 66.0	7.01		
61) Er				2.11	2.12 DD	2.2 0.6	5 1.27 D	6.6	0.71 D	10.2		
20	Ľ.			3.12 D	12.4	2.08 DD	3.8 0.6	5 1.22 D	9.7				
21	Ч	3.58 D	12.4			2.10 DD	2.0 1.1			0.69 D	10.4	193.5/16.7b	
22	ы	3.56 D	12.3	3.13 D	12.5	2.08 DD	3.6 0.9	•				179.6/159.0 b	
53	1			3.19 PT	11.9	2.17 D	0.5	1.35 D	9.7			153.4 b/43.5	
24	C					1.81 I 1.42 T	C.1			0.97 PT	8.1		
121 2	000			3.12 D 3.38 PT	10.6 11.1	1.50 D	22			1.20 D	9.2		
í	1			• • > ? ? ?									

							-							at a virte
	Tvn	FeP(O	Me)	CoP(O)	Me),	AsMe		IWNI-H	r FePN			CoPM	å	
I	Ч	8	J I	s v	ر م	8	ח		\$ \$	J		8 8	с ³ Ј	ŝ
27	Н					1.68 DD	2.0	0.7	1.18 D	9.5		1.28 D	9.3	
78	Η			3.44 D	12.1	1.69 DD	1.1	1.1	1.27 D	9.4				164 b/21.1
5	Η	3.38 D	11.8			1.71 DD	2.4	1.3				1.38 D	9.3	
ଛ	Н	3.35 D	11.8	3.50 D	12.0	1.70 DD	1.9	0.5						
31	I			3.29 PT.	11.1	1.95 DT	1.6	0.2				1.06 D	9.8	
32	ŗ					2.14 DT	0.6	0.8	1.32 D	9.8		1.03 PT	8.0	
33	ſ			3.18 D	11.7	2.18 DD	1.9	0.6	1.32 D	9.6		1.01 D	9.8	
\$	ſ			3.33 PT	11.9	2.23 DT	0.6	1.7	1.34 D	9.7				158 b/45.0
35	ſ	3.61 D	12.1			2.09 DT	1.2	0.6				1.06 PT	7.9	
36	ſ	3.64 D	12.1	3.15 D	11.6	2.15 DD	1.8	1.1				1.02 D	9.6	
37	ſ	3.61 D	12.1	3.29 PT	11.6	2.20 DT	1.1	1.7						195.3/158.9 b
38	K			3.37 D	11.0	1.71 Db	1.0		1.36 D	9.0		1.38 D	8.6	
6 E	K			3.50 PT	11.3	1.80 Db	0.8		1.39 D	9.2				
4	X	3.52 D	11.6	3.28 D	11.6	1.73 Db	2.0					1.43 D	9.2	
41	K	3.49 D	11.5	3.49 PT	11.9	1.78 Db	0.4							
47	Γ	3.58 D	11.6			1.63 DT	0.4	1.2				1.14 PT	7.7	
4	M	3.27 D	11.1			1.64 DT	1.0	0.6	1.33 DD	8.8 0.	4	1.48 D	8.8	184.1/20.1/-
4	Z			3.28 D	10.8	2.08 M			1.37 D	8.8		I.25 PT	7.0	
4 5	Z			3.39 PT	10.8	2.16 M			1.37 D	9.6		1.13 D	9.5	151 b/46.6/18.2b
4	Z			3.48 PT	11.1	2.25 M			1.40 D	9.6				
4	Z	3.68 D	12.3	3.20 D	10.8	2.03 M						1.22 PT	7.5	
\$	Z	3.69 D	12.2	3.40 PT	11.0	2.16 M						1.13 D	9.6	
6 4	Z	3.67 D	12.2	3.37 PT	11.0	2.22 M								197.1/152.5 b
50	0	3.40 D	11.3			2.13 DT	0.8	0.7	1.48 D	9.3		1.13 PT	7.7	
51	0	3.44 D	11.8	3.24 D	11.8	2.20 DT	1.9	0.5	1.51 D	9.4		1.13 D	9.6	188.6/ /46.2/14.9 b
۳) δ (NM	e ₂) = 2.	$41 b \delta_{0}$	(NMe ₂) =	= 2.38.										

Tab. 1 (Fortsetzung)

3399

225*

	Тур		v(Fe-	CO)			v(Co	CO)	
1	_	2038 st	1977 st	1950 Sch	1944 sst	2104 st	2048 m	2045 st	2019 st
2	-	2080 m	2011 s	1998 sst		2025 st	1980 m	1964 m	
3	A	2023 st	1962 st	1929 sst		2044 s	1988 st	1973 st	
4	A	2029 st	1965 m	1931 sst	40.65	2054 s	1996 st	1990 st	
5	C	2035 s	1989 Sch	1970 Sch	1965 sst	1982 st	1921 m		
6	C	2054 m	2003 Sch	1984 SSL	1975 sst	1995 st	1924 m	1024 5-1	
0	U D	2035 s	1907 SSI 1082 Sab	1948 SCh 1077 Sob	1071 oct	1984 m	1930 \$	1924 Sch	
0	D	2040 \$	1983 SCII	19// 501	19/1 550	2002 m	1949 S	2021 st	2005 at
10	D R	1905 S	1003 SSL	1800 est		2095 m 2100 m	2037 m 2041 s	2021 st 2027 st	2005 St 2011 set
11	D _	1966 ss	1886 Sch	1879 sst		2100 III	20413	2027 30	2011 330
12	_	1984 ss	1905 sst	1895 sst					
13	_	1974 ss	1884 sst	1879 Sch					
14		2001 ss	1914 sst	1906 sst					
15		1980 ss	1909 sst	1898 st					
16	Е	2029 m	2026 m	1945 sst	1917 st	1980 s	1934 Sch	1930 sst	
17	E	2030 m	1954 m	1927 Sch	1921 st	1990 s	1947 Sch	1942 sst	
18	Е	2033 st	1952 sst	1925 Sch	1922 sst	1998 s	1962 Sch	1952 sst	
19	F	1956 s	1873 sst			2036 ss	1980 m	1963 st	
20	F	1953 s	1874 sst	1871 sst		2043 ss	1991 m	1979 m	1970 Sch
21	F	1971 s	1895 m	1884 sst		2036 ss	1980 m	1964 sst	
22	F	1974 Sch	1898 st	1887 sst		2048 ss	2002 Sch	1994 st	1983 st
23		1927 Sch	1867 sst			$C_0(CO)_3$:	2021 ss	1969 st	1948 Sch
24	0	2002	1045	1029		$Co(CO)_2$:	1997 m 1742 all)	1952 st	
24	G	2003 m	1945 SSL	1938 St 1044 st		1932 SCII	1743 S ²⁷		
25	C	2010 m 2020 st	1950 SSL 1965 set	1944 St 1057 set		1932 S	1750 S ⁻¹ 1764 e ^{a)}		
20	н	1984 s	1931 Sch	1932 SSL 1920 sst		1939 m 1949 sst	1896 m		
28	н	2012 88	1932 st	1720 330		1959 sst	1913 s		
29	Ĥ	1989 ss	1930 sst			1957 st	1912 s		
30	Ĥ	2008 s	1946 st	1939 Sch		1967 sst	1921 m		
31	I	2022 st	1941 m	1922 sst	1916 sst	1936 Sch	(1912 Sch)		
32	J	1946 s	1868 st	1857 st		1977 m	1932 m	1918 sst	
33	J	1943 Sch	1863 sst	1859 sst		1985 m	1933 Sch	1930 st	
34	J	1950 Sch	1866 sst	1863 sst		1996 s	1954 Sch	1946 st	
35	J	1956 s	1884 st	1874 st		1980 s	1933 m	1920 sst	
36	Ĵ	1962 s	1886 Sch	1877 sst		1988 m	1939 Sch	1933 st	
37	J	1965 Sch	1888 Sch	1879 sst		1998 s	1955 Sch	1948 st	
38	K	19/5 ss	1920 Sch	1914 sst		1958 m	1948 m		
39	K	1980 SS	1930 st	1921 SSL		1965 Scn	1958 m 1956 m		
40 /1	N V	1989 88	1930 SSI 1940 est	1917 St 1930 Sch		19075	1950 III 1966 m		
41	T	1999 S 1962 st	1940 SSL 1955 Sch	1930 Sell	1893 m	1973 s 1972 sst	1900 m 1913 st	1730 ss ^{a)}	1715 s ^{a)}
43	M	1982 55	1917 Sch	1908 Sch	1075 m	1924 sst	1913 st 1872 m	1100 35	1/10 5
44	N	1950 ss	1857 sst	1848 sst		1914 m	1898 m		
45	N	1945 ss	1857 Sch	1854 sst		1925 s	1912 st		
46	Ν	1950 s	1858 sst	1854 sst		1933 s	1926 Sch		
47	Ν	1962 ss	1875 sst	1865 sst		1930 s	1913 st		
48	Ν	1962 ss	1883 sst	1873 sst		1930 s	1913 st		
49	Ν	1963 s	1881 Sch	1872 sst		1939 m	1927 Sch		
50	0	1882 m	1826 st			1965 s	1924 m	1912 sst	
51	0	1883 m	1827 sst			1975 s	1926 sst		

Tab. 2. CO-Valenzschwingungsbanden von 1-51 (Cyclohexan, cm⁻¹)

^{a)} Brücken-CO.

Triplett, 1.7-1.2-0.3), 49 (Triplett, 0.9). Die Gesamtheit der NMR-Informationen erlaubte zusammen mit den unabhängigen Synthesen (s. o.) ein konsistentes System von Konstitutionszuordnungen, wie es den Formeln und Tabellen zugrundeliegt.

Die Einkernkomplexe 11–14 und die unerwartet gebildeten Mehrkernkomplexe 15 und 23 waren ebenfalls NMR-spektroskopisch zu identifizieren. Für 11–15 sind die NMR-Spektren einfach und eindeutig. Bei 23 läßt das ³¹P-NMR-Spektrum wieder erkennen, welche Liganden am Eisen und Cobalt gebunden sind. Dazu deutet das Pseudotriplett der $P(OMe)_3$ -Liganden durch seine chemische Verschiebung auf eine CoP_2 -Einheit ohne Metall-Metall-Bindung hin, ebenso wie das PMe₃-Signal typisch zu einer PFe-Einheit ohne Metall-Metall-Bindung gehört. Weiterhin zeigen die Signale der beiden AsMe₂-Brücken durch ihre chemische Verschiebung das Fehlen von Metall-Metall-Bindungen an, und an ihrer Aufspaltung zum Dublett bzw. Triplett erkennt man ihre Bindung an die PFe- bzw. CoP_2 -Einheit. FD-Massenspektrum und unabhängige Synthese vervollständigten hier den Strukturbeweis.

Die einzigen Informationen, die den IR-Spektren der Komplexe 1-51 im CO-Bereich (Tab. 2) sofort zu entnehmen sind, sind das Auftreten der $L_2Fe(CO)_3$ -Einheiten in den Typen **B**, **F**, **J** und N und das Vorliegen der CO-Brücken in den Typen **G** und L. Bei den anderen Substanzen erlaubten erst zahlreiche Vergleiche eine einigermaßen widerspruchsfreie Zuordnung der Banden, wie sie in der Tabelle angegeben ist. Im Gegensatz zu den NMR-Spektren, die in der Regel direkt interpretierbar sind, lassen die IR-Spektren erst nach längerer Übung die einzelnen phosphansubstituierten Carbonylmetalleinheiten erkennen. Da Konsistenz das wesentliche Argument der Zuordnung war, wird hier auf eine Detaildiskussion verzichtet. Zwei Phänomene der Metall-Carbonyl-Chemie treten jedoch deutlich zutage. Das ist einmal das Absinken aller CO-Valenzschwingungsbanden mit zunehmender Donorsubstitution, das sich auch auf der Seite des jeweils anderen Metallatoms zeigt. Und zum anderen treten regelmäßig mehr CO-Banden auf als CO-Gruppen im Molekül sind, was mit den zahlreichen Anordnungsmöglichkeiten der Liganden an den einzelnen Metallatomen erklärt werden muß.

Diskussion

Die hier beobachtete wiederholbare Öffnung der Fe-Co-Bindung durch Addition von Donorliganden am Cobaltatom kann als starkes chemisches Argument dafür gewertet werden, daß von den beiden Formulierungsmöglichkeiten^{3, 12)} für 2 diejenige mit der Donor-Akzeptor Fe \rightarrow Co-Bindung (2a) gegenüber der anderen (2b) zu bevorzugen ist. Denn in all diesen Reaktionen wird der schlechte Donor Fe durch einen besseren Donor ersetzt. In dem gleichen Sinne kann erklärt werden, daß die Komplexe der Typen **B**, **F** und J leichter eine neue Fe-Co-Bindung bilden als die dazu isomeren Komplexe der Typen A, E und I, denn in den ersteren ist das Eisen durch den zusätzlichen Donor elektronenreicher. Ganz analog zeigt die unterschiedliche Reaktivität von 28 und 29, daß mit dem besseren Donor PMe₃ am Eisen eine stärkere Metall-Metall-Bindung

$$(CO)_{4}F \stackrel{As}{\leftarrow} Co(CO)_{3} \qquad (CO)_{4}F \stackrel{As}{\leftarrow} Co(CO)_{3}$$

$$2a \qquad 2b$$

resultiert. Und die Isomerisierungsneigung der Komplextypen C, G und L entspricht ebenfalls dem Bedürfnis, für die Fe \rightarrow Co-Bindung das Eisenatom elektronenreicher und das Cobaltatom elektronenärmer zu machen.

Alle hier beschriebenen Komplexe mit Metall-Metall-Bindung gehören zu neuen Strukturtypen, während sich diejenigen ohne Metall-Metall-Bindung als Analoga der einfachen Verbindungen LFe(CO)₄, L₂Fe(CO)₃ und L₃Fe(CO)₂ bzw. (CO)₄CoX, L(CO)₃CoX, L₂(CO)₂CoX und L₃(CO)CoX¹³ klassifizieren lassen. Die Anhäufung von Elektronendichte dürfte der Grund dafür sein, daß neben einer Metall-Metall-Bindung nur maximal drei Donorliganden gebunden werden können (Typen K, L und M) und daß die Komplexe vom Typ N und O nicht mehr unter CO-Abspaltung aggregieren. Dem entspricht, daß auch einfache Verbindungen dieser Art wie L₂(CO)₂Co – Co(CO)₂L₂ oder L₂(CO)₃Mn – Mn(CO)₃L₂¹⁴ nicht existieren und daß stark mit Donorliganden beladene Zweikernkomplexe zur radikalischen Spaltung der Metall-Metall-Bindung neigen¹⁵⁻¹⁷.

Auch diejenigen Komplexe der Typen I bis O, die im Rahmen dieser Arbeit nicht erhalten werden konnten, würden sehr elektronenreich sein. Es fehlen normalerweise die Vertreter, die besonders viele von den stärkeren Donorliganden PMe₃ enthalten würden. Zwar gilt, daß das stärkere Nucleophil PMe₃ schneller die Metall-Metall-Bindung öffnet, eine Reaktion, die mit einem Geschwindigkeitsgesetz 2. Ordnung nach einem assoziativen Mechanismus verläuft¹⁸⁾. Doch der Elektronenreichtum der entstehenden Komplexe führt auch dazu, daß aus Typ N und O bevorzugt PMe₃ wieder abgespalten wird (s. o.). Hier wird wieder ein bekanntes Prinzip der Metallcarbonyl-Chemie deutlich, nämlich daß nur unter besonderen Bedingungen mehr als die Hälfte aller Carbonylliganden durch Donoren zu ersetzen ist. Während bei den hier beschriebenen Verbindungen die IR-Spektren deutlich die Zunahme der Elektronendichte mit zunehmendem Substitutionsgrad anzeigen, gilt für die NMR-Spektren eher das Umgekehrte. Je mehr Donoren vorhanden sind, desto tiefer liegen fast alle NMR-Signale der Verbindungen.

Die Isomerisierung der Komplexe, die jeweils einen Phosphanliganden vom Cobalt zum Eisen wandern läßt, dürfte auch auf dem Bestreben beruhen, ungünstige Elektronendichteverteilungen auszugleichen. Die jeweils am Cobalt addierten neuen Liganden erzeugen auf dessen Seite eine einseitige Ladungsanhäufung. Stattdessen ist aber im Sinne der durch 2a gegebenen Bindungsbeschreibung eher eine Ladungsanhäufung am Eisen begünstigt. Die leicht verlaufenden Isomerisierungen $C \rightarrow D$, $G \rightarrow H$ und $L \rightarrow M$ sind normal zu erklären, da Mehrkernkomplexe mit Metall-Metall-Bindungen allgemein eine hohe Neigung zur Fluktuation haben¹⁹. Schwieriger zu verstehen ist der Austausch von CO- und Phosphanliganden zwischen den nicht miteinander verknüpften Metallatomen der Typen E und I. Wie die Umwandlung $42 \rightarrow 48$ lehrt, muß hier jedoch eventuell vor dem Ligandenaustausch eine Phosphanabspaltung angenommen werden. Diese liefert einen Komplex mit Metall-Metall-Bindung, der leicht isomerisieren und anschließend das abgespaltene Phosphan wieder addieren kann. Dafür spricht, daß drastischere Reaktionsbedingungen erforderlich sind. Möglicherweise hängt auch die bei der Isomerisierung $17 \rightarrow 21$ beobachtete Inhibierung durch P(OMe)₃ damit zusammen, denn in Gegenwart dieses Ligand-Überschusses ist naturgemäß die Existenz eines Metall-Metall-verknüpften Komplexes vom Typ C wenig wahrscheinlich. Ein simples mechanistisches Konzept, das alle Arten der Isomerisierung, z. B. auch die Umwandlungen zu 28 und 29 und das Ausbleiben der Isomerisierung beim Typ K erfaßt, scheint uns jedoch nicht zu existieren.

Die CO-Brücken in den Komplextypen G und L demonstrieren ein besonderes Ladungsungleichgewicht in diesen Fällen. Denn bei G stehen nur auf Seiten des Cobalts zwei Donorliganden und bei 42, dem einzigen Beispiel für L, stehen zwei PMe₃-Liganden am Cobalt einem P(OMe)₃-Liganden am Eisen gegenüber. Das Einschwenken einer CO-Gruppe vom Eisen in die Brückenposition gibt dem Cobaltatom Gelegenheit, Elektronendichte abzuleiten²⁰⁾. Gleichzeitig und im gleichen Sinne wird dadurch eine Bindungsformulierung ohne Donor-Akzeptor-Fe-Co-Bindung erforderlich. Die CO-Brücke kann auch als der halbe Weg einer Isomerisierung bezeichnet werden. Denn da einer der gängigsten Wege eines Fluktuationsprozesses die paarweise Ligandenbewegung ist¹⁹⁾, muß jetzt nur noch ein Phosphanligand sich der CO-Gruppe entgegenbewegen.

Bei allen Umwandlungen $2 \rightarrow C$, $C \rightarrow G$, $D \rightarrow H$ und $H \rightarrow K$ oder L wird eine CO-Gruppe durch einen Donorliganden ersetzt. Diese Substitution verläuft aber nicht bei intaktem Molekülgerüst, sondern stufenweise unter Öffnung und Schließung einer Metall-Metall-Bindung. Ein Reaktionsverlauf dieser Art konnte bisher nur aus kinetischen Untersuchungen von Substitutionen an Mehrkernkomplexen geschlossen werden²¹⁾. Hier tritt er dagegen stöchiometrisch und wiederholbar auf. Da der Ligandensubstitution als Aktivierungsschritt von katalytischen Prozessen so enorme Bedeutung zukommt, ist hiermit ein neuer Weg der Katalyse durch Mehrkernkomplexe erkennbar geworden. Und da manche als Katalysatoren verwendete Organometall-Cluster sehr leicht durch Nucleophile abgebaut werden^{13, 22}, muß bei ihnen auch die Öffnung von Metall-Metall-Bindungen durch ihre Substrate angenommen werden. Öffnung und Schließung von Metall-Metall-Bindungen ist damit ein Grundmuster katalytischer Zyklen.

Die im Rahmen dieser Arbeit durch Zufall aufgefundenen Komplexe 15 und 23 mit kettenförmiger Anordnung von Metall- und P- bzw. As-Atomen eröffnen neue Perspektiven, da sie auch gezielt zugänglich sind ¹⁰). Einmal zeigen sie, daß sich die Metall-Metall-Bindungen in basenverbrückten Zweikernkomplexen auch durch metallorganische Lewis-Basen öffnen lassen, wodurch zahlreiche neue Synthesen möglich werden. Zum anderen deuten sie an, daß sich auch Mehrkernkomplexe gezielt herstellen lassen, in denen mehr als zwei oder drei Metallatome über Brückenatome aneinandergereiht sind. Solche Verbindungen, die eine Entwicklung auf Übergangsmetall-Hauptgruppenelement-Polymere einleiten, sollten interessante physikalische Eigenschaften haben.

Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft und vom Fonds der Chemischen Industrie unterstützt. Besonderer Dank gilt Herrn Dr. K. Steinbach, Universität Marburg, und Herrn Dr. P. Merbach, Universität Erlangen, für die sorgfältige Aufnahme der Massenspektren. Die NATO förderte die Kooperation mit Prof. Dr. A. J. Poë, University of Toronto, durch ein Reisestipendium.

Experimenteller Teil

Alle Umsetzungen wurden unter Luftausschluß in gereinigten Lösungsmitteln durchgeführt. Zu Photolysen diente ein Hg-Hochdruckbrenner Hanau TQ 150-Z3. Ausgangsmaterialien wurden gekauft bzw. nach den genannten Literaturangaben gewonnen. Die Angaben über die Luftstabilität der Produkte wurden durch IR-spektroskopische Verfolgung ihrer Zersetzung im festen Zustand erhalten.

Die quantitativen Daten zur Darstellung von Komplexen ohne Metall-Metall-Bindung sind in Tab. 3 zusammengestellt, diejenigen der Komplexe mit Metall-Metall-Bindung in Tab. 4. Namen, Eigenschaften und Analysendaten finden sich entsprechend in Tab. 5 und 6. Reaktionsdurchführung und Aufarbeitung erfolgten nach verschiedenen Methoden, die im folgenden und in den Tabellen durch Großbuchstaben gekennzeichnet sind:

A: Nach Entfernen des Lösungsmittels i. Vak. wurde der Rückstand mit 20 ml Hexan extrahiert, der Extrakt auf 3 ml eingeengt und bei -30 °C der Kristallisation überlassen. Nach 12 h wurde rasch filtriert bzw. dekantiert, mit wenig kaltem Hexan gewaschen und i. Vak. getrocknet.

B: Nach beendeter Reaktion (NMR-Kontrolle) wurde die Lösung i. Vak. auf 10% des ursprünglichen Volumens eingeengt. Bei Benzol oder Benzol/Hexan-Gemischen als Lösungsmittel wurden danach 1-5 ml Hexan zugesetzt. In allen Fällen wurde nach erfolgter Kristallisation die Mutterlauge verworfen und das Produkt mehrmals mit wenig kaltem Hexan gewaschen.

C: Die Reaktion wurde nur im NMR-Maßstab durchgeführt, auf eine Isolierung des Produktes wurde verzichtet. Ausbeuten sind geschätzt, so daß eine Angabe in g nicht sinnvoll erschien.

D: Der Komplex ist in Lösung nur bei großem Überschuß von $P(CH_3)_3$ beständig; deshalb wurde eine gesättigte Lösung der Ausgangsverbindung eingesetzt, das ausgefallene Produkt von der Mutterlauge getrennt und mit wenig kaltem Hexan gewaschen. Lagerung im festen Zustand ist nur unterhalb -40 °C möglich.

E: Die Reaktion verläuft unter CO-Abspaltung, sie wurde deshalb bei einem Druck < 100 Torr durchgeführt, was eine Verkürzung der Reaktionszeit auf $^{1}/_{3} - ^{1}/_{6}$ der bei Normaldruck benötigten Dauer erlaubte. Nach Beendigung der Reaktion (NMR-Kontrolle) wurde filtriert, das Lösungsmittel i. Vak. entfernt, der Rückstand mit wenig Hexan versetzt und bei einer Temperatur < 0 °C der Kristallisation überlassen. Anschließend wurde filtriert bzw. dekantiert, mit wenig kaltem Hexan gewaschen und i. Vak. getrocknet.

F: Das Lösungsmittel wurde i. Vak. entfernt, das Produkt mit wenig Hexan in der Kälte kristallisiert und nach Verwerfen der Mutterlauge mit wenig kaltem Hexan gewaschen.

G: Bei der Reaktion wurde ein Produktgemisch erhalten und mit Benzol als Elutionsmittel über eine 2×50 cm Kieselgelsäule chromatographisch getrennt. Nähere Einzelheiten sind nachfolgend beschrieben.

a) Bei der Darstellung von 20 aus 7 wurde NMR-spektroskopisch ein Gemisch mit 80% 20 und 8% 23 gefunden. Die chromatographische Trennung erbrachte folgende Substanzen: Aus der ersten, roten Fraktion eine geringe Menge $(CO)_4$ FeP $(CH_3)_3$, die verworfen wurde. Aus der zweiten, dunkelroten Fraktion 0.69 g (75%) 20; aus der dritten, rotbraunen Fraktion (Benzol/THF 1:1) 0.07 g (5%) 23.

b) Bei der Darstellung von 23 aus 7 fiel ein Gemisch mit 30% 23 und 30% 20 an (NMR-spektroskopisch). Erhalten wurden nach chromatographischer Trennung: Aus der ersten, roten Fraktion 0.08 g (13%) (CO)₄FeP(CH₃)₃; aus der zweiten, dunkelroten Fraktion 0.34 g (23%) 20; aus der dritten, orangeroten Fraktion eine minimale Menge eines nicht identifizierbaren Komplexes (NMR-Spektrum ähnlich wie bei 23); aus der vierten, dunkelbraunen Fraktion (Benzol/THF 1:1) 0.53 g (23%) 23. c) Bei der Darstellung von 28 aus 25 zeigte das Produktgemisch eine Zusammensetzung aus 30% 28 und 70% 29 (NMR-spektroskopisch). Die chromatographische Aufarbeitung lieferte: Aus der ersten, roten Fraktion 0.18 g (25%) 28; aus der zweiten, roten Fraktion 0.43 g (62%) 29.

Kom- plex	•	Ausg verbin g	angs- ndung mmol	Reagens	g	mmol	Lösı mit n	ungs- tel ^{a)} nl	Reak -Temp. (°C)	tions- -Dauer (h)	Vari- ante	Au g	sb. %
9 10 16	13 14 5	0.46 0.98 1.00	1.29 2.43 2.16	KCo(CO) ₄ KCo(CO) ₄ P(CH ₃) ₃	0.35 0.60 0.16	1.66 2.86 2.11	E E H	50 50 25	0 0 25	0.5 0.5 0.5	A A B	0.38 0.76 1.03	59 58 88
17	5	0.20	0.43	P(OCH ₃) ₃	0.21	1.69	Ĥ	10	0	0.5	B	0.21	81
17	6	0.25	0.49	$P(CH_3)_3$	0.16	2.11	В	8	25	0.3	В	0.23	80
18	6	1.20	2.34	P(OCH ₃) ₃	0.11	0.85	Н	35	25	2.0	В	1.30	87
19	7	0.22	0.47	P(CH ₃) ₃	0.08	1.00	Н	10	25	1.0	В	0.23	91
19	16	0.30	0.56				В	5	80	3.0	В	0.24	80
20	7	0.73	1.57	P(OCH ₃) ₃	2.48	20.00	В	10	65	3.0	G	0.69	75
20	17	0.02	0.03				В	1	80	5.0	С		20
20	23	0.04	0.04				В	1	65	30.0	С		35
21	8	0.18	0.35	$P(CH_3)_3$	0.08	1.00	Н	12	25	1.0	В	0.19	92
21	17	0.02	0.03				В	1	80	48.0	С		75
22	8	0.17	0.33	$P(OCH_3)_3$	0.53	4.20	В	7	25	16.0	В	0.18	84
22	18	0.34	0.53				В	20	75	12.0	В	0.29	84
23	7	1.15	2.48	$P(OCH_3)_3$	0.32	2.54	В	35	25	40.0 ^{b)}	G	0.35	23
31	25	0.10	0.18	$P(OCH_3)_3$	0.21	1.69	В	5	18	2.0	В	0.10	82
31	26	0.15	0.25	$P(CH_3)_3$	0.08	1.00	B /	Ha) a	84	120.0	В	0.15	86
32	24	0.13	0.25	$P(CH_3)_3$	0.08	1.00	В	10	25	16.0	В	0.13	87
32	27	0. 49	0.96	$P(CH_3)_3$	0.16	2.11	B /.	H^{a} 20	0 0	2.0	В	0.52	92
33	24	0.15	0.29	$P(OCH_3)_3$	0.11	0.85	Н	10	25	0.5	В	0.10	53
33	27	0.40	0.78	$P(OCH_3)_3$	1.16	9.31	Н	25	25	3.0	В	0.44	89
33	28	0.21	0.38	$P(CH_3)_3$	0.16	2.11	Н	15	25	12.0	В	0.21	88
34	28	0.14	0.25	$P(OCH_3)_3$	0.11	0.85	H	8	25	12.0	В	0.12	70
35	25	0.19	0.34	$P(CH_3)_3$	0.08	1.00	B /	H ^e	5 0	1.0	В	0.16	74
35	29	0.10	0.18	$P(CH_3)_3$	0.08	1.00	<u>B/</u>	H''	5 25	< 0.1	В	0.11	97
36	29	0.12	0.21	$P(OCH_3)_3$	0.11	0.85	B /	\mathbf{H}^{g} 1	0 25	< 0.1	В	0.11	78
36	30	0.15	0.25	$P(CH_3)_3$	0.08	1.00	Н	30	25	0.3	В	0.14	83
36	31	0.32	0.47				B	12	45	24.0	В	0.28	88
37	30	0.19	0.31	$P(OCH_3)_3$	0.11	0.85	H	7	25	2.0	B	0.18	79
44	38	0.37	0.61	$P(CH_3)_3$	0.24	3.16	H	10	~-10	3.0	D	0.29	70
45	38	0.48	0.79	$P(OCH_3)_3$	0.32	2.54	H	10	0	1.0	В	0.45	78
45	39	0.02	0.03	$P(CH_3)_3$	0.05	0.66	B	1	25	5.0	В	0.01	54
46	39	0.31	0.47	$P(OCH_3)_3$	2.10	16.90	H	15	4	24.0	В	0.32	81
47	40	0.19	0.29	$P(CH_3)_3$	0.12	1.58	H	2	25	3.0		0.13	02 5 c)
47	42	0.02	0.03	$P(OCH_3)_3$	0.02	0.17	В	1	20	< 0.2		0.01	55
48	40	0.02	0.03	$P(OCH_3)_3$	0.11	0.85		1	23	4.0	D	0.01	55 07
48	41	0.27	0.38	$P(CH_3)_3$	0.20	2.05	п	0	25	5.0	D C	0.20	01
48	4Z	0.02	0.03	$\Gamma(UCH_3)_3$	1.50	12.74	 บ	0	25	24.0	D D	0.24	95
47	41	0.24	0.34	P(CU)	1.00	2 11	- F1 - P/	о Ц h)	5 - 10	24.0	D D	0.24	51
50	44	0.14	0.23	$\mathbf{P}(\mathbf{CH})$	0.10	4.11	- D/ R	1	25	2.0	Ď	0.00	69
50	43	0.14	0.25	P(OCH)	1.80	14.52	ч	20	25	2.0 4 N	R	0.00	62
51	45	0.12	0.20	1 (0013)3	1.00	17.32	11	20	25	ч.v	D	0.09	02

Tab. 3. Darstellung der Komplexe ohne Fe-Co-Bindung

^{a)} B = Benzol, E = Ether, H = Hexan. $^{b)}$ Reaktion bei 100 Torr. $^{c)}$ Reaktion führt letztlich (über 47 und 40) zu 48. $^{d)}$ Benzol/Hexan 3:2. $^{e)}$ 1:1. $^{f)}$ 1:4. $^{g)}$ 1:6. $^{h)}$ 1:3.

Kom- plex		Ausgang verbindu g	s- ing mmol	Lösungs- mittel ^{a)} -E ml	Bed. ^t	Reaktion "-Temp. (°C)	is- -Zeit (h)	Variante	Aus	sb. %
5	3	3 20	6 50	B 70	+	5	60	F	2 10	70
6	4	0.83	1 54	B 70	+	5	6.0	Ē	0.49	62
ž	5	0.20	0.43	B S	-	60	10.0	л Т	0.45	55
7	ğ	0.20	0.50	B 10	-	25	12.0	F	0.11	52
7	ģ	0.03	0.06	B 1	+	5	10	ČE	0.12	95
8	6	0.03	0.06	B 1	_	52	9.0			40
8	10	0.03	0.00	B 10	-	40	14.0	Э Я	0.23	50
8	10	0.03	0.06	B 1	+	5	15	ČE	0.25	95
24	16	0.70	1 30	B 70	+	5	0.5	F	0.35	53
25	17	2.10	3 57	$\mathbf{B}/\mathbf{H}^{(c)}$ 70	+	-20	2.0	Ē	1.60	76
26	18	1.10	1.73	B/H^{d} 70	÷	- 20	1.0	Ē	0.80	76
27	19	0.74	1.37	B 70	+	5	15	Ē	0.50	73
27	24	0.30	0.58	B 15	_	45	80	Ē	0.18	60
28	20	0.40	0.68	B 70	+	5	3.0	Ē	0.10	58
28	25	0.71	1.24	B 10	÷.	50	3.0	ā	0.18	25
28	29	0.03	0.05	B 1		80	8.0	č	0.10	35
29	21	0.03	0.05	$\tilde{\mathbf{B}}$ 1	+	5	1.0	č		95
29	25	0.13	0.23	B 10	_	17	12.0	Ĕ	0.11	86
29	28	0.03	0.05	B 1	_	80	15.0	Ċ	0.11	45
30	22	0.03	0.04	B 1	+	Š	5.0	ČE		85
30	26	0.40	0.65	B 10	_	25	20.0	F	0.32	81
38	33	0.62	0.98	B 70	+		1.5	Ê	0.52	84
39	34	0.55	0.80	$\mathbf{B}/\mathbf{H}^{\circ}$ 70	÷	-20	25	Ē	0.50	85
40	36	0.60	0.88	B 70	+	รั้	1.0	Ē	0.40	70
41	37	0.60	0.82	B 70	+	5	1.0	Ē	0.32	55
42	35	0.47	0.74	B/H°) 70	+	20	0.5	Ē	0.51	69
43	42	0.56	0.92	B 15	-	40	24.0	F	0.48	86

Tab. 4. Darstellung der Komplexe mit Fe-Co-Bindung

^{a)} B = Benzol, H = Hexan. - ^{b)} Reaktionsbedingung: + = photochemisch, - = thermisch. ^{c)} Benzol/Hexan 1:2. - ^{d)} 1:1.

Die Darstellung einiger Komplexe, die sich nicht tabellarisch erfassen lassen, wird gesondert beschrieben:

Tricarbonyl[(dimethylamino)dimethylarsan](trimethylphosphan)eisen (11): Die Lösung von 7.00 g (28.7 mmol) (CO)₄FeP(CH₃)₃ in 70 ml Benzol wurde mit 10 ml (11.8 g, 79.2 mmol) (CH₃)₂AsN(CH₃)₂ versetzt und 10 h bei 5 °C und 90 Torr bestrahlt. Dann wurde filtriert, i. Vak. zur Trockne eingeengt und der ölige Rückstand durch fraktionierte Sublimation gereinigt. Bei 10^{-3} Torr wurden erhalten: 1. Fraktion: gelb, 30-70 °C, 0.70 g (10%) nichtumgesetztes (CO)₄FeP(CH₃)₃. 2. Fraktion: gelborange, 70-90 °C, 8.45 g (81%) luftempfindliches 11 vom Schmp. 93-96 °C.

C10H21AsFeNO3P (365.0) Ber. C 32.90 H 5.80 N 3.84 Gef. C 33.04 H 6.00 N 3.60

Tricarbonyl[(dimethylamino) dimethylarsan] (trimethoxyphosphan) eisen (12⁵): Wie 11 aus 5.8 g (19.6 mmol) (CO)₄FeP(OCH₃)₃ und 10 ml (11.8 g, 79.2 mmol) (CH₃)₂AsN(CH₃)₂. Fraktionierte Sublimation (10⁻³ Torr) erbrachte bei 50–120 °C 0.41 g (7%) unverbrauchtes (CO)₄FeP(OCH₃)₃ und bei 120–135 °C 6.07 g (74%) gelboranges, luftempfindliches 12 vom Schmp. 59–61 °C.

C10H21AsFeNO6P (413.0) Ber. C 29.08 H 5.13 N 3.39 Gef. C 28.68 H 5.35 N 2.97

	Name	Farbe	Luft- stabilität ^{a)}	Schmp. (°C)	Summenformel (Molmasse)	Analyse C H Fe	
6	Tricarbonyl-µ-(dimethylarsenido)- (tetracarbonylcobalt)(trimethyl- phosphan)eisen	schwarzgrün	Ι	64 – 67 (Zers.)	C ₁₂ H ₁₅ AsCoFeO7P (491.9)	Ber. 29.30 3.07 11.35 Gef. 29.36 3.21 11.19	
10	Tricarbonyl-µ-(dimethylarsenido)- (tetracarbonylcobalt)(trimethoxy- phosphan)cisen	schwarzgrün	Ι	57 – 59 (Zers.)	C ₁₂ H ₁₅ AsCoFeO ₁₀ P (539.9)	Ber. 26.69 2.80 10.34 Gef. 26.68 2.79 10.50	
16	Tetracarbonyl[dicarbonylbis- (trimethylphosphan)cobalt]- μ-(dimethylarsenido)eisen	dunkelrot	+1	112	C ₁₄ H ₂₄ AsCoFeO ₆ P ₂ (540.0)	Ber. 31.14 4.48 10.34 Gef. 31.04 4.61 10.04	
17	Tetracarbonyl[dicarbonyl(trimethoxy- phosphan)(trimethylphosphan)- cobalt]-µ-(dimethylarsenido)eisen	gelbbraun	+!	94-97	C ₁₄ H ₂₄ AsCoFeO ₉ P ₂ (588.0)	Ber. 28.60 4.11 9.49 Gef. 28.67 4.30 9.29	
18	Tetracarbonyl[dicarbonylbis- (trimethoxyphosphan)cobalt]- µ-(dimethylarsenido)eisen	rotbraun	+1	72 - 74	C ₁₄ H ₂₄ AsCoFeO ₁₂ P ₂ (636.0)	Ber. 26.44 3.80 8.78 Gef. 26.59 3.90 8.60	
19	Tricarbonyl-µ-(dimethylarsenido)- [tricarbonyl(trimethylphosphan)- cobalt](trimethylphosphan)eisen	dunkelbraun	I	135138	C ₁₄ H ₂₄ AsCoFeO ₆ P ₂ (540.0)	Ber. 31.41 4.48 10.34 Gef. 31.28 4.42 10.56	
20	Tricarbonyl-µ-(dimethylarsenido)- [tricarbonyl(trimethoxyphosphan)- cobalt](trimethylphosphan)eisen	dunkelrot	+1	66 - 96	C14H24AsCoFeO9P2 (588.0)	Ber. 28.60 4.11 9.49 Gef. 28.54 4.26 9.79	
21	Tricarbonyl-µ-(dimethylarsenido)- [tricarbonyl(trimethylphosphan)- cobalt](trimethoxyphosphan)cisen	orangerot	+	127 - 129	C ₁₄ H ₂₄ AsCoFeO ₉ P ₂ (588.0)	Ber. 28.60 4.11 9.49 Gef. 28.50 4.11 9.63	
22	Tricarbonyl-µ-(dimethylarsenido)- [tricarbonyl(trimethoxyphosphan)- cobalt](trimethoxyphosphan)eisen	rotbraun	+1	4647	C ₁₄ H ₂₄ AsCoFeO ₁₂ P ₂ (636.0)	Ber. 26.44 3.80 8.78 Gef. 26.80 3.95 8.99	

1979

Tab. 5. Charakterisierung der Komplexe ohne Fe-Co-Bindung

Reaktivität von Metall-Metall-Bindungen

	Н	I. Lange	enbach u	nd H. Va	hrenkam	<i>p</i>		Jahrg. 112
Fe	5.99 5.63	8.16 8.22	9.50 9.91	8.78 8.91	8.16 8.37	8.78 8.92	8.16 8.40	7.63 7.58
nalyse H	4.22 4.37	4.86 4.97	5.66 5.81	5.23 5.36	4.86 4.99	5.23 5.29	4.86 5.04	4.54 4.60
CA	27.06 27.36	28.09 28.10	32.68 32.20	30.21 29.77	28.09 28.08	30.21 30.35	28.09 28.19	26.25 26.14
	Ber. Gef.	Ber. Gef.	Ber. Gef.	Ber. Gef.	Ber. Gef.	Ber. Gef.	Ber. Gef.	Ber. Gef.
Summenformel (Molmasse)	C ₂₁ H ₃₉ As ₂ Co ₂ FeO ₁₄ P ₃ (932.0)	C ₁₆ H ₃₃ AsCoFeO ₁₁ P ₃ (684.1)	C ₁₆ H ₃₃ AsCoFeO ₅ P ₃ (588.1)	C ₁₆ H ₃₃ AsCoFeO ₈ P ₃ (636.1)	C ₁₆ H ₃₃ AsCoFcO ₁₁ P ₃ (684.1)	C ₁₆ H ₃₃ AsCoFeO ₈ P ₃ (636.1)	C ₁₆ H ₃₃ AsCoFeO ₁₁ P ₃ (684.1)	C ₁₆ H ₃₃ AsCoFeO ₁₄ P ₃ (732.1)
Schmp. (°C)	89 - 93	82-84	90 92	99 102	103 - 105	100 - 102	105 - 108	68 - 70
Luft- tabilität ^{a)}	+	+	I	I	I	+	+	+1
Farbe	dunkelrotbraun	rot	braun	dunkelrot	rotbraun	hellrot	orangerot	orangerot
Name	Tricarbonyl-µ-(dimethylarsenido)- {tricarbonyl[dicarbonylbis- (trimethoxyphosphan)cobalt]- µ-(dimethylarsenido)cobalt}- (trimethylphosphan)cisen	Tetracarbonyl[carbonylbis(trimethoxy- phosphan)(trimethylphosphan)- cobalt]-µ-(dimethylarsenido)eisen	Tricarbonyl[dicarbonylbis(trimethyl- phosphan)cobalt]-µ-(dimethylarsenido)- (trimethylphosphan)eisen	Tricarbonyl[dicarbonyl(trimethoxy- phosphan)(trimethylphosphan)cobalt]- µ-(dimethylarsenido)- (trimethylphosphan)cisen	Tricarbonyl[dicarbonylbis(trimethoxy- phosphan]cobalt]-µ-(dimethylarsenido)- (trimethylphosphan)cisen	Tricarbonyl[dicarbonylbis(trimethyl- phosphan)cobalt]-µ-(dimethylarsenido)- (trimethoxyphosphan)eisen	Tricarbonyl[dicarbonyl(trimethoxy- phosphan)(trimethylphosphan)cobalt]- µ-(dimethylarsenido)(trimethoxy- phosphan)cisen	Tricarbonyl[dicarbonylbis(trimethoxy- phosphan)cobalt]-µ-(dimethylarsenido)- (trimethoxyphosphan)eisen
	23	31	32	33	34	35	36	37

Tab. 5 (Fortsetzung)

		Tab	. 5 (Fortsetzu	(bu			
	Name	Farbe	Luft- stabilität ^{a)}	Schmp. (°C)	Summenformel (Molmasse)	Analyse C H	Fe
4	Tricarbonyl[carbonyl(trimethoxy- phosphan)bis(trimethylphosphan)- cobalt]-µ-(dimethylarsenido)- (trimethylphosphan)eisen	orangerot	1	84-87	C ₁₈ H ₄₂ AsCoFcO ₇ P ₄ (684.1)	Ber. 31.60 6.19 Gef. 31.37 6.31	8.15 7.78
45 S	Tricarbonyl[carbonylbis(trimethoxy- phosphan)(trimethylphosphan)cobalt]- µ-(dimethylarsenido)- (trimethylphosphan)cisen	rotbraun	I	93 – 96	C ₁₈ H ₄₂ AsCoFeO ₁₀ P ₄ (732.1)	Ber. 29.53 5.78 Gef. 29.65 5.84	7.63 7.98
46	Tricarbonyl[carbonyltris(trimethoxy- phosphan)cobalt]-µ-(dimethylarsenido)- (trimethylphosphan)eisen	rot	I	79 - 82	C ₁₈ H ₄₂ AsCoFeO ₁₃ P ₄ (780.1)	Ber. 27.71 5.43 Gef. 27.57 5.30	7.16 7.13
47	Tricarbonyl[carbonyl(trimethoxy- phosphan)bis(trimethylphosphan)- cobalt]-µ-(dimethylarsenido)- (trimethoxyphosphan)eisen	gelbbraun	I	81-83	C ₁₈ H ₄₂ AsCoFeO ₁₀ P ₄ (732.1)	Ber. 29.53 5.78 Gef. 29.85 5.90	7.63 7.33
48	Tricarbonyl[carbonylbis(trimethoxy- phosphan)(trimethylphosphan)cobalt]- µ-(dimethylarsenido)- (trimethoxyphosphan)eisen	dunkelrot	I	100-102	C ₁₈ H ₂ 7AsCoFeO ₁₃ P ₄ (780.1)	Ber. 27.71 5.43 Gef. 27.80 5.54	7.21 7.21
49	Tricarbonyl[carbonyltris(trimethoxy- phosphan)cobalt]-µ-(dimethylarsenido)- (trimethoxyphosphan)eisen	orangerot	I	96 - 100	C ₁₈ H ₄₂ AsCoFeO ₁₆ P ₄ (828.1)	Ber. 26.11 5.11 Gef. 26.34 5.33	6.74 6.89
50	Dicarbonyl[dicarbonylbis(trimethyl- phosphan]cobalt]-µ-(dimethylarsenido)- (trimethoxyphosphan)- (trimethylphosphan)eisen	rotbraun	I	73 - 76	C ₁₈ H ₄₂ AsCoFeO ₇ P ₄ (684.1)	Ber. 31.60 6.19 Gef. 31.35 6.05	8.15 8.66
51	Dicarbonyl [dicarbonyl (trimethoxy- phosphan) (trimethylphosphan) cobalt]- µ-(dimethylarsenido) (trimethoxy- phosphan) eisen	braun	1	84 - 87	C ₁₈ H ₄₂ AsCoFeO ₁₀ P ₄ (732.1)	Ber. 29.53 5.78 Gef. 29.38 5.87	7.63 7.89

^{a)} Luftbeständigkeit: + =luftstabil, $\pm = m \ddot{a} \beta ig$, - =nicht luftbeständig.

1979

Reaktivität von Metall-Metall-Bindungen

3409

	Tab. 6. C	harakterisierung	g der Komple	xe mit Fe-C	o-Bindung	
	Name	Farbe	Luft- stabilität ^{a)}	Schmp. (°C)	Summenformel (Molmasse)	C Analyse C H
ŝ	Tetracarbonyl[dicarbonyl(trimethyl- phosphan)cobalt]-µ-(dimethylarsenido)- eisen(Fe – Co)	dunkelrot	1	21 – 24	C ₁₁ H ₁₅ AsCoFeO ₆ P (463.9)	Ber. 28.48 3.26 12 Gef. 28.57 3.35 11
9	Tetracarbonyl[dicarbonyl(trimethoxy- phosphan)cobalt]-µ-(dimethyl- arsenido)eisen(Fe - Co)	dunkelrot	I	25-27	C ₁₁ H ₁₅ AsCoFeO ₉ P (511.9)	Ber. 25.81 2.95 10 Gef. 25.82 2.92 11
7	Tricarbonyl-µ-(dimethylarsenido)- [tricarbonylcobalt](trimethyl- phosphan)eisen(Fe – Co)	braun	+	37 - 40	C ₁₁ H ₁₅ AsCoFeO ₆ P (463.9)	Ber. 28.48 3.26 12 Gef. 28.67 3.31 11
œ	Tricarbonyl-µ-(dimethylarsenido)- [tricarbonylcobalt](trimethoxy- phosphan)eisen(Fe – Co)	rot	I	75 - 76	C ₁₁ H ₁₅ AsCoFeO ₉ P (511.9)	Ber. 25.81 2.95 10. Gef. 26.00 2.99 11.
24	μ-Carbonyl-tricarbonyl[carbonylbis- (trimethylphosphan)cobalt]-μ-(dimethyl- arsenido)eisen(Fe - Co)	braun	+	79 — 80	C ₁₃ H ₂₄ AsCoFeO ₅ P ₂ (512.0)	Ber. 30.49 4.73 10. Gef. 30.37 4.86 11.
25	μ-Carbonyl-tricarbonyl[carbonyl- (trimethoxyphosphan) (trimethyl- phosphan)cobalt]-μ-(dimethyl- arsenido)eisen(Fe – Co)	rotbraun	ł	70-72	C ₁₃ H ₂₄ AsCoFeO ₈ P ₂ (560.0)	Ber. 27.88 4.32 9. Gef. 27.81 4.36 9.
26	μ-Carbonyl-tricarbonyl[carbonylbis- (trimethoxyphosphan)cobalt]- μ-(dimethylarsenido)cisen(Fe – Co)	rot		63 — 65	C ₁₃ H ₂₄ AsCoFeO ₁₁ P ₂ (608.0)	Ber. 25.68 3.98 9. Gef. 25.62 4.07 9.
72	Tricarbonyl[dicarbonyl(trimethyl- phosphan]cobalt]-µ-(dimethylarsenido)- (trimethylphosphan)eisen(Fe – Co)	dunkelbraun	I	73 - 76	C ₁₃ H ₂₄ AsCoFeO ₅ P ₂ (512.0)	Ber. 30.49 4.73 10. Gef. 30.27 4.87 10.
28	$Tricarbonyl[dicarbonyl(trimethoxy-phosphan)cobalt]-\mu-(dimethylarsenido)-(trimethylphosphan)eisen(Fe - Co)$	dunkelrot	I	70-71	C ₁₃ H ₂₄ AsCoFeO ₈ P ₂ (560.0)	Ber. 27.88 4.32 9. Gef. 27.84 4.41 10.
29	$Tricarbonyl[dicarbonyl(trimethyl-phosphan)cobalt]-\mu-(dimethylarsenido)-(trimethoxyphosphan)cisen(Fe-Co)$	rot	I	110-112	C ₁₃ H ₂₄ AsCoFeO ₈ P ₂ (560.0)	Ber. 27.88 4.32 9. Gef. 27.95 4.45 10.

3410

Jahrg. 112

	Name	Farbe	Luft- stabilität ^{a)}	Schmp. (°C)	Summenformel (Molmasse)	Analys C H	e Fe
8	Tricarbonyl[dicarbonyl(trimethoxy- phosphan)cobalt]-µ-(dimethylarsenido)- (trimethoxyphosphanleisen(Fe – Co)	dunkelrot		25-29	C ₁₃ H ₂₄ AsCoFeO ₁₁ P ₂ (608.0)	Ber. 25.68 3.98 Gef. 25.60 4.04	9.19 9.35
38	Tricarbonyl[carbonyl(trimethoxy- phosphan)(trimethylphosphan)- cobalt]-µ-(dimethylarsenido)- (trimethylphosphan)eisen(Fe – Co)	dunkelrot	+	Ö	C ₁₅ H ₃₃ AsCoFeO,P ₃ (608.1)	Ber. 29.63 5.47 Gef. 29.56 5.53	9.18 9.31
39	Tricarbonyl[carbonylbis(trimethoxy- phosphan]cobalt]-µ-(dimethylarsenido)- (trimethylphosphan)eisen(Fe – Co)	dunkelrot	1	Ō	C _{1 s} H _{3 s} AsCoFeO ₁₀ P ₃ (656.0)	Ber. 27.46 5.07 Gef. 27.83 4.90	8.51 8.13
40	Tricarbonyl[carbonyl(trimethoxy- phosphan) (trimethylphosphan)- cobalt]-µ-(dimethylarsenido)- (trimethoxyphosphan)eisen (Fe – Co)	dunkelrot	I	Ö	C ₁₅ H ₃₃ AsCoFeO ₁₀ P ₃ (656.0)	Ber. 27.46 5.07 Gef. 26.93 5.06	8.51 8.11
41	Tricarbonyl[carbonylbis(trimethoxy- phosphan]cobalt]-µ-(dimethyl- arsenido) (trimethoxyphosphan)- eisen (Fe – Co)	rotbraun	+1	Ö	C ₁₅ H ₃₃ AsCoFeO ₁₃ P ₃ (704.0)	Ber. 25.59 4.73 Gef. 26.28 4.69	7.93 7.60
42	$\mu\text{-Carbonyl-dicarbonyl[carbonylbis-} (trimethylphosphan)cobalt]-\mu-(dimethyl-arsenido)(trimethoxyphosphan)-eisen (Fe - Co)$	rot	I	92 - 94	C ₁₅ H ₃₃ AsCoFeO ₇ P ₃ (608.1)	Ber. 29.63 5.47 Gef. 29.63 5.41	9.18 9.05
43	Dicarbonyl[dicarbonyl(trimethyl- phosphan)cobalt]-µ-(dimethyl- arsenido) (trimethoxyphosphan)- (trimethylphosphan)eisen (Fe - Co)	orangerot	I	101 - 103	C ₁₅ H ₃₃ AsCoFeO7P ₃ (608.1)	Ber. 29.63 5.47 Gef. 29.39 5.68	9.18 8.47

^{a)} Luftstabilität: + = luftstabil, $\pm =$ mäßig, - = nicht luftbeständig.

Tab. 6 (Fortsetzung)

Reaktivität von Metall-Metall-Bindungen

3411

Tricarbonyl(chlordimethylarsan)(trimethylphosphan)eisen (13): Zu 0.47 g (1.29 mmol) 11 in 5 ml Ether wurden bei -30° C 6 ml 0.6 M etherische HCl getropft. Unter Rühren wurde das Reaktionsgemisch innerhalb 1 h auf 0 °C erwärmt, und dann wurden alle flüchtigen Bestandteile i. Vak. entfernt. Der Rückstand wurde einmal mit 5 und zweimal mit 2.5 ml Hexan extrahiert, die vereinigten Extrakte wurden zur Trockne eingeengt und das kristalline 13 mit 0.5 ml Hexan gewaschen. Isoliert wurden 0.31 g (67%) gelbe, luftempfindliche Kristalle vom Schmp. 89–91 °C (Zers.). Der Komplex zersetzt sich in Lösung und als Feststoff bei längerer Lagerung.

 $C_8H_{15}AsClFeO_3P$ (356.4) Ber. C 26.96 H 4.25 Fe 15.67 Gef. C 26.55 H 4.45 Fe 16.00

Tricarbonyl(chlordimethylarsan)(trimethoxyphosphan)eisen (14⁵): Die Darstellung erfolgte wie vorstehend aus 1.74 g (4.20 mmol) 12 und 20 ml 0.6 м etherischer HCl. Ausb. 1.50 g (88%), rotes luftempfindliches Pulver vom Schmp. 170 °C (Zers.), das ebenso empfindlich ist wie 13.

C₈H₁, AsClFeO₆P (404.1) Ber. C 23.78 H 3.75 Fe 13.82 Gef. C 23.69 H 3.67 Fe 14.12

 μ -(Tetramethyldiarsan)-bis[tricarbonyl(trimethoxyphosphan)eisen] (15): 1.60 g (3.96 mmol) rohes, öliges 14 wurden mit 2 ml Hexan versetzt, 12 h bei 25 °C gehalten, danach 3 h i. Hochvak. getrocknet und weitere 12 h bei 25 °C belassen. Beim Öffnen des Kolbens wurde Cl₂-Geruch festgestellt; daraufhin wurde aus der kristallinen Masse 14 extrahiert (zweimal 20 ml Hexan) und der Rückstand aus 20 ml Benzol/Hexan (2:1) umkristallisiert. Ausb. 280 mg (20%), orangerote, luftbeständige Kristalle vom Schmp. 132–133 °C.

 $C_{16}H_{30}As_2Fe_2O_{12}P_2$ (737.9) Ber. C 26.04 H 4.0 Fe 15.13 Gef. C 26.03 H 4.05 Fe 15.02

Unabhängige Synthese von 23: 0.10 g (0.22 mmol) 7, gelöst in 5 ml Hexan, reagierten bei 0 °C 1/2 h mit 1 ml einer 0.16 M Hexanlösung von $(CH_3)_2AsCo(CO)_2[P(OCH_3)_3]_2^{10}$. Nach Entfernen des Lösungsmittels i. Vak. und Zugabe von 10 ml Hexan kristallisierte das Rohprodukt innerhalb 1 h. Nach Verwerfen der Mutterlauge und zweimaligem Waschen mit 1 ml Hexan wurden 0.12 g (82%) 23 isoliert.

Literatur

- ¹⁾ Vgl.H. Vahrenkamp, Angew. Chem. 90, 403 (1978); Angew. Chem., Int. Ed. Engl. 17, 379 (1978).
- ²⁾ Vgl. K. Leonhardt und H. Werner, Angew. Chem. 89, 656 (1977); Angew. Chem., Int. Ed. Engl. 16, 649 (1977).
- ³⁾ A. Mayr, W. Ehrl und H. Vahrenkamp, Chem. Ber. 107, 3860 (1974).
- 4) H. J. Langenbach und H. Vahrenkamp, Chem. Ber. 110, 1195 (1977).
- ⁵⁾ H. J. Langenbach und H. Vahrenkamp, Chem. Ber. 110, 1206 (1977).
- ⁶⁾ U. Richter und H. Vahrenkamp, J. Chem. Res. 1977, S 156, M 1775.
- ⁷⁾ M. Börner und H. Vahrenkamp, Chem. Ber. 111, 2190 (1978).
- ⁸⁾ H. J. Langenbach, E. Keller und H. Vahrenkamp, Angew. Chem. **89**, 197 (1977); Angew. Chem., Int. Ed. Engl. **16**, 188 (1977).
- ⁹⁾ W. Ehrl und H. Vahrenkamp, Chem. Ber. 106, 2563 (1973).
- ¹⁰⁾ R. Müller und H. Vahrenkamp, unveröffentlicht.
- ¹¹⁾ H. Beurich und H. Vahrenkamp, Angew. Chem. **90**, 915 (1978); Angew. Chem., Int. Ed. Engl. **17**, 863 (1978).
- ¹²⁾ E. Keller und H. Vahrenkamp, Chem. Ber. 109, 229 (1976).
- ¹³⁾ T. A. Manuel, Adv. Organomet. Chem. 3, 181 (1965).
- ¹⁴⁾ Vgl. D. R. Kidd, C. P. Cheng und T. L. Brown, J. Am. Chem. Soc. 100, 4103 (1978).
- ¹⁵⁾ C.F. Putnik, J. J. Welter, G. D. Stucky, M. J. D'Aniello, B. A. Sosinsky, J. F. Kirner und E. L. Muetterties, J. Am. Chem. Soc. 100, 4107 (1978).
- ¹⁶⁾ R. A. Jackson und A. Poë, Inorg. Chem. 17, 997 (1978).
- ¹⁷⁾ Th. Madach und H. Vahrenkamp, Z. Naturforsch., Teil B 33, 1301 (1978).
- ¹⁸⁾ R. A. Jackson und A. Poë, Privatmitteilung.
- ¹⁹⁾ R. D. Adams und F. A. Cotton in L. M. Jackman und F. A. Cotton (Herausgeber), Dynamic Nuclear Magnetic Resonance Spectroscopy, S 489, Academic Press, New York 1975.
- ²⁰⁾ F. A. Cotton und J. M. Troup, J. Am. Chem. Soc. 96, 1233 (1974).
- ²¹⁾ Vgl. A. J. Poë und M. V. Twigg, J. Chem. Soc., Dalton Trans. 1974, 2982.
- ²²⁾ H. Vahrenkamp, Struct. Bonding (Berlin) 32, 1 (1977).

[22/79]